Issue August 28, 2011
Title:
Hilbert Logic And Its Extension To Sciences
Author:James Kuodo Huang
Description.
This paper is trying to integrate the Hilbert logic with a given science and its related subjects. In [5][6][7], these types of ideas have given naive
investigation. In this article, the author is trying to find general issues related to how to extend Hilbert logic to sciences. We define science is any field which some part of their problems can be defined and represented by mathematical technology. It is obvious that not all the scientific problems are mathematical problems.
References
(1)J. Kuodo Huang,Toward a Complete and Perfect Hilbert Axiomatic Logic System,
AMS Miami Conference April 1-3 2006.
(2)J. Kuodo Huang, Hilbert Second Problems and Uncertainty Computing,
Journal of Nanchang Institute of Technology,
Vol. 25 (2006) No. 2, Page 36-42
(3)J. Kuodo Huang, Programming in Hilbert Complete Perfect Logic ,
AMS San Francisco Meeting, April 29-30. (2006)
(4) David Hilbert, "Mathematical Problems", Bulletin of the American Mathematical Society
vol. 8, no. 10 (1902), pp. 437-479.
(5)J. Kuodo Huang, B. Chen, SRM Learning Game Theory With Application to Internet Security and Management Systems,
IEEE Proceedings Grc2007, Page 584-587
(6)J. Kuodo Huang, On Systems Software Engineering with Application to Bioinformatics,
IEEE Proceedings Grc2007, Page 628-631.
(7)J. Kuodo Huang, Hilbert Logic and Hilbert Problems, (2006 preprint)
(8)J. Kuodo Huang, Hilbert Logic, Mathematical Logic and Philosophical logic,
International integrated theorectical computer science journal,
Issue Aug. 12, 2010, ISSN 2154-2236 (Online),ISSN 2152-1840(printed)
........